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Abstract

The majority of studies for laminar free-convection over a vertical isothermal plate with uniform blowing or suction
concern gases and air. The existing results for water have been produced assuming a linear relationship between fluid
density and temperature and constant viscosity and thermal conductivity. However, it is known that the density—
temperature relationship for water is non-linear at low temperatures and viscosity and thermal conductivity are
functions of temperature. In this study the problem of laminar free-convection over a vertical isothermal plate with
uniform blowing or suction in water has been investigated in the temperature range between 20 and 0 °C taking into
account the temperature-dependence of p, k& and p. The results are obtained with the numerical solution of the
boundary layer equations. The variation of u, k and p with temperature has a strong influence on the results. © 2002

Published by Elsevier Science Ltd.

1. Introduction

Free-convection along a vertical plate with mass
transfer at the wall has been studied by many authors
in the past. Eichhorn [5] was the first to study the
effect of suction and injection on free-convective flow.
He considered power-law variations of plate temper-
ature  (7p =c¢x™) and  transpiration  velocity
(vg = cx™=1/%) under which self-similar solutions of
the governing equations are possible and presented
results for constant temperature plate (m =0) and
variable transpiration velocity (vy = c,x~'/4) for a fluid
with Pr=0.73. For the case of isothermal plate with
uniform blowing or suction similarity solutions do not
exist. For the latter problem Sparrow and Cess [17]
provided approximate series solutions valid near the
plate leading edge for Pr=0.72. This problem was
considered in more detail by Merkin [10] who ob-
tained asymptotic solutions, valid at large distances
from the leading edge, and presented results for
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Pr=1. The next order corrections to the boundary
layer solution for this problem, concerning gases, were
obtained by Clarke [4] who did not invoke the usual
Boussinesq approximation. The solutions for strong
suction and blowing on general body shapes which
admit a similarity solution has been given by Merkin
[11]. Parikh et al. [16] studied both numerically and
experimentally the problem of air (Pr=0.7) free-con-
vection over an isothermal porous vertical plate with
uniform transpiration taking into account the air
variable physical properties. Minkowycz and Sparrow
[13] using the local non-similarity method presented
solutions for a wide range of Pr numbers (Pr = 0.01,
0.02, 0.05, 0.10, 0.20, 0.50, 0.70, 0.72, 1.0, 2.0, 5.0,
10.0, 20.0, 50.0, 100.0). Vedhanayagam et al. [19]
presented a transformation of the equations for gen-
eral blowing and wall temperature variations and
presented results for the isothermal plate with uniform
blowing for Pr = 0.7. A solution to the constant plate
temperature with uniform air blowing, based on the
film model, has been derived by Brouwers [1]. In a
subsequent paper Brouwers [2], using the film model,
derived a thermal correction factor and a novel fric-
tion correction factor which were applied to free-
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Nomenclature

Cp water specific heat (J kg™ °C™")

f dimensionless stream function

g gravitational acceleration (m s~2)

Gr, local Grashof number

k thermal conductivity (J s~! m~! °C™!)

Nu,  local Nusselt number
Nu:  local Nusselt number with zero transpiration
p pressure (N m~2)
Pr Prandtl number
Pr, ambient Prandtl number
S salinity
T water temperature (°C)
T, ambient water temperature (°C)
Ty plate temperature (°C)
vertical velocity (m s7)
v horizontal velocity (m s~')

vo transpiration velocity (m s™')
X vertical coordinate (m)
y horizontal coordinate (m)

Greek symbols

p thermal expansion coefficient of water
n pseudo-similarity variable

I dynamic viscosity (kg m™" s)

e film dynamic viscosity (kg m~"' s)

Lo dynamic viscosity at plate (kg m™' s)
v kinematic viscosity (m? s~')

injection parameter

water density (kg m™)
Pa ambient water density (kg m™)
Or film water density (kg m ™)
0o water density at plate (kg m™)
10 non-dimensional temperature

convection along a vertical porous plate for Pr = 0.73,
1 and 7. The problem of blowing and suction on the
free-convection over a vertical plate with a given wall
heat flux has been considered by Chaudhary and
Merkin [3]. The presented results are valid for Pr = 1.
Merkin [12] considered again the problem of free-
convection flow on a vertical plate with prescribed
temperature and presented results for variable tran-
spiration velocities for Pr numbers 1 and 7.

From the above literature review it is clear that for
laminar free-convection over a vertical isothermal
plate with constant blowing or suction the only results
that correspond to water are those of Minkowycz and
Sparrow [13] and specifically the results for P =5 and
10. It should be mentioned here that Pr=5 corre-
sponds to water temperature equal to 32.78 °C and
Pr=10 to 7.78 °C. In addition, only two of the above
works take into account the temperature-dependence
of the fluid physical properties [4,16]. These works
concern gases and air. However, it is known that the
temperature-dependence of fluid properties (dynamic
viscosity, thermal conductivity and density) is quite
different in air from that in water. For example, the
viscosity of air increases with temperature, whereas
water viscosity decreases with temperature. Therefore,
for heating a fluid, the effect of temperature-dependent
viscosity is to decrease transport in air and to increase
transport in water. The opposite occurs for cooling
the fluid. On the other hand, the density—temperature
relationship is linear for air whereas in water this re-
lationship is linear at high temperatures and non-lin-
ear at low temperatures (see Fig. 1). The density of
pure water is maximum at 3.98 °C. The density in-
creases as the temperatures decreases approaching 3.98
°C, while the density decreases as the temperature
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Fig. 1. Variation of water density in the 10-0 °C region.

decreases from 3.98 to 0 °C. The objective of the
present paper is to present results for laminar
free-convection of pure and saline water along a ver-
tical isothermal plate with uniform blowing or suction
in the temperature range between 20 and 0 °C, taking
into account the temperature-dependence of viscosity
and thermal conductivity as well as the non-linearity
between density and temperature.

2. The mathematical model

Consider laminar free-convection along a vertical
isothermal plate placed in a calm environment with u
and v denoting, respectively, the velocity components in
the x and y direction, where x is vertically upwards and y
is the coordinate perpendicular to x. The flow is as-
sumed to be steady, of the boundary layer type. The
governing equations of this flow with Boussinesq ap-
proximations are:
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continuity equation : Ou + o 0 (1)
y q . ax ay - Y

momentum equation :

ou  Jou_ 10 QuN _ p—p,
oy por My Pa

energy equation : a—T—b—va—T*LE ka—T (3)
gy © Yo Wy pe, y\ )’

g (2)

u

where T is the water temperature, p and p, are the local
and ambient water density, u is the dynamic viscosity, k&
is the thermal conductivity and ¢, is the specific heat.
The density of saline water is a function of temperature,
salinity and pressure. In this paper the known from
Oceanography International Equation of State for Sea-
water [6,18] is used for the calculation of density. This
equation is valid for temperatures from —2 to 40 °C,
salinities from 0% to 40%0 and pressures from 1 to
maximum oceanic pressure in bars. In this work all
calculations have been made for atmospheric pressure,
that is for 1 bar.

In the boundary layer equations the dynamic vis-
cosity, thermal conductivity and specific heat of water
are included and must be calculated for each situation.
For the calculation of saline water dynamic viscosity
u(T,s,p) the formula proposed by Matthaus was used
(see [9]). The equation is valid for 0 °C< 7 <30 °C,
0%0 < S < 36%0 and 1-1000 bars but for larger ranges
of T, s and p a slightly greater error is produced. The
thermal conductivity was calculated from a formula
proposed by Caldwell and the specific heat from a
formula proposed by Bromley et al. (see [9]). The
above formulae are valid for oceanic conditions.

The following boundary conditions were applied:

at

y=0: u=0, v=0vy, T=Tp

as

y—oo u=0, T=T,

where vy is the fluid velocity normal to plate. Positive v
corresponds to blowing and negative to suction. Tj is the
plate temperature and and 7, is the ambient fluid tem-
perature.

Eqgs. (1)-(3) represent a two-dimensional parabolic
flow. Such a flow has a predominant velocity in the
streamwise coordinate which in our case is the vertical
direction. In these flows convection always dominates
the diffusion in the streamwise direction. This is ex-
pressed by the absence of streamwise velocity diffusion
term in the momentum equation. In this kind of flows no
reverse flow is accepted in the predominant direction.
The solution of this problem in the present work is ob-
tained by the finite difference method described by Pat-
ankar [15].

In the numerical solution of the boundary layer
problems the calculation domain must always be at least
equal or wider than the boundary layer thickness.
However, it is known that the boundary layer thickness
increases with x. If a Cartesian grid, formed by lines of
constant x and y is chosen, the number of grid points
within the boundary layer for small values of x, where
the boundary layer is thin, is small and the computa-
tional accuracy is low. If the mesh length is reduced to
have more points in the boundary layer at small x, the
grid points at large x become excessive. Therefore, it
would be desirable to have a grid which conforms to the
actual shape of the boundary layer. In this work an
expanding grid has been used (Fig. 2) according to the
following relation:

Yout = Yo + ¢x, (4)

where y, is the outer boundary, c is the spreading rate
of the outer boundary and x is the distance at the cur-
rent step. The appropriate value of ¢ has been found to
be 0.15. The forward step size increases in proportion to
the width of the calculation domain and the lateral cells
are distributed uniformly. In this work the forward step
was 1% of the outer boundary and a total of 300 lateral
grid cells have been used. These values have been found
by trial and error. For more information about the ex-
panding grid, see [8]. Calculations were made on a DEC
ALPHA 7000 computer using quadruple precision ac-
curacy.

The momentum and energy equations have the fol-
lowing general form:

0p 0

Jp Jp

where I' is the diffusion coefficient and S is the source
term. In the momentum equation the diffusion coef-

ficient is equal to dynamic viscosity and in the energy
equation equal to k/c,. In the energy equation the

plate

Fig. 2. Calculation domain.



966 A. Pantokratoras | International Journal of Heat and Mass Transfer 45 (2002) 963-977

source term is zero. The above differential equation is
discretized directly and we have the following algebraic
linear equation [15]:

appp = awQy +aypy + asps + b, (6)
where
r,A
ay = ’Axy + (pu), Ay, (7)
I',Ax
an = (o), A ®)
I
a5 =S+ (on) A ©)
b = SAxAy, (10)
ap = ay + ay + as. (11)

Eq. (6) can be written as follows:
—ayQy + ap@p — asPs = aw Py + b. (12)

The solution procedure starts with a known distribution
of velocity and temperature at the plate edge and
marches in the vertical direction. Flat initial velocity and
temperature profiles were assumed. These profiles were
used only to start the computations and their shape had
no influence on the results which were taken far down-
stream of the edge. The coefficients ay, ap, as and the
right-hand side term in the above equation are consid-
ered known in the current position because they are
calculated using upstream known values. For example,
let us consider the discretized momentum equation in
the second grid line (the first grid line is located at the
plate edge). The coefficient ay is

oy = 1, Ax
Ay

~ (pv),Ax (13)

and is calculated using the values of u, p and v from the
first line. The dynamic viscosity is calculated using the
Matthaus formula while the density is calculated using
the International Equation of State for Seawater. The
temperature used for the above calculations is taken
from the initial temperature profile. The value of v in the
first line in zero. The right-hand side term ay ¢, + b is
also known. The coefficient aj is calculated from values
at the first line like ay and ¢, is the velocity at the first
line. The quantity b which represents the source term of
the momentum equation and includes the density is
calculated also at the first line using the International
Equation of State for Seawater and temperatures of the
first line.

If we have m points along each grid line we have
m — 2 equations similar to Eq. (12) from point 2 to point
m — 1. Point 1 is located at the plate and point m is far
away from the plate where — the ambient conditions
prevail. Velocities u(1) and u(m) are always zero. After

writing the m — 2 equations along the grid line we have a
system of m — 2 linear equations which has a tridiagonal
form and the solution is obtained using the tridiagonal
matrix algorithm (TDMA). Solving the above system we
have the values of vertical velocity in the second line.
The next step is the calculation of the cross-stream
velocities v in the second line from the continuity Eq. (1).
It should be noted here that the cross-stream velocity at
the plate is vy so we have always v(1) = vy. The third step
is the calculation of the temperatures in the second line
using the discretized equations of the energy equation.
Now the coefficient ay is

_ kAx
Ay

= (pv),Ax (14)

ay

and is calculated using the values of &, ¢,, p and v
from the first line. The thermal conductivity is calcu-
lated from the Caldwell formula and the specific heat
from the Bromley formula. The boundary conditions
for the energy equation is 7(1) =T, and T(m) = T,.
After the calculation of u, v and T in the second line
the procedure is repeated at the third line taking into
account as upstream values those calculated at the
second line.

3. Results and discussion

It has been established that the problem of free-
convection along a heated vertical plate with blowing or
suction admits similarity solution only when the wall
temperature and the transpiration velocity varies with x.
For the more realistic case of isothermal plate with
uniform blowing or suction considered in this paper no
similarity solution exists. The two governing variables
for this problem is the pseudo-similarity variable » and
the streamwise non-dimensional variable ¢ (injection
parameter) defined as [16]

1/4
_Y |G
nfx[4] , (15)

¢=" 2 (16)

vox | Gry -l
V )

where Gr, is the local Grashof number and v is the fluid
kinematic viscosity. As was mentioned before, in this
work the water physical properties are handled as
functions of temperature. This means that the kinematic
viscosity v is variable across the boundary layer. In Eq.
(16) we use the kinematic viscosity that corresponds to
average temperature between the wall and the free
stream. Thus we have

~1/4
vop; | Gry
¢ { } , 17

pe |4 1)




A. Pantokratoras | International Journal of Heat and Mass Transfer 45 (2002) 963-977 967

where p; and g is the film density and film dynamic
viscosity both calculated at film temperature (7 + 7,)/2
[16]. The injection parameter ¢ is positive for blowing
and negative for suction. In the classical analysis with
linear relationship between density and temperature the
local Grashof number is defined as

e BI)(T ~ 1)

Gr,
) "

(18)
where f(7,) is the fluid thermal expansion coefficient
taken at ambient temperature. The above Grashof
number is unsuitable for water free-convection at low
temperatures due to non-linear relationship between
density and temperature. For example, when the ambi-
ent temperature corresponds to density extremum, the
B(T,) coefficient becomes zero and the Grashof number
becomes zero, too. In this case no similarity variable n
can be defined. Therefore, the following Grashof num-
ber is further used

_gplz'x3 Pa — Po (19)
= 5 ,
luf pa

Gr,

where p, is the water density at the wall. The kinematic
viscosity (v = p/p) is again calculated at film tempera-
ture (Tp + 7,)/2.

The problem of laminar free-convection over a ver-
tical isothermal impermeable plate (zero blowing and
suction) with constant x4 and k and non-linear density—
temperature relationship admits similarity solution [14].
The above problem is a special case of the more general
problem treated in the present paper. Consequently the
quantities used in the similarity analysis should be valid
also for the porous plate. The vertical velocity is given
by

o

1/2 p
Lion)"s (20)

or in non-dimensional form as

, _ uxp ~1/2

=—"1[Gr, . 21
=, 16r] @1)
In the above equation g and p are handled as vari-
ables across the boundary layer. A profile of the
velocity f” has zero value at plate and far away from
the plate and a maximum value f,  in the interme-
diate region. The second derivative of f’ with respect
to n is

2
n _ PX -3/4 ( au)
=—[Gr, — 22
uﬂ[ ! dy @)
and the value of f” at the plate is
2
11 PoX —3/4 Ou
11(0) = =——[Gr, <*) : (23)
MO\/E[ ] ay y=0

This quantity is used for the calculation of the wall shear
stress. Another useful quantity in this program is the
wall heat flux ¢’(0) that is the derivative of the non-di-
mensional temperature at plate. Taking the derivative of
the non-dimensional temperature ¢ = (7T —T,)/(To — Ta)
with respect to n we have

In the present work the above quantities have been
calculated as follows. As mentioned before the numeri-
cal method used is a space marching technique giving
the downstream velocity and temperature profiles using
the known upstream profiles. At every downstream po-
sition viscosity, thermal conductivity, specific heat and
density are calculated at each grid point across the
boundary layer from the calculated temperature profile
using the above mentioned formulae. Then the Grashof
number was calculated from Eq. (19). The next steps
were the calculation of variable n from Eq. (15) and the
calculation of non-dimensional vertical velocity profile
f' from Eq. (21). The f, . was calculated from known
values across the boundary layer. The f”(0) was calcu-
lated from Eq. (23) and the ¢'(0) from Eq. (24). The
derivatives [0u/dy],_, and [0T/dy],_, were calculated
from the following equations:

y=

Table 1
Numerical results of Parikh et al. [16] and the present method
(Pr=0.70)

14 Nu,/Nu
Parikh et al. Present Difference
[16] method (%)
-2.0 2.820 2.856 1.28
-1.0 1.805 1.806 0.06
0.0 1.000 1.000 0.00
+1.0 0.465 0.460 —-1.08
+2.0 0.160 0.160 0.00
Table 2

Correspondence between the ambient Prandtl number and
ambient temperature of pure water

T, Pr,
20.00 6.99
15.00 8.01
10.00 9.31
5.00 10.99
3.98 11.40
3.00 11.80
2.00 12.24
1.00 12.70




968 A. Pantokratoras | International Journal of Heat and Mass Transfer 45 (2002) 963-977

where (1) is a grid point on the plate and (2) is an ad-

Ou _ u(2) —u(l) (25)
W Ay ’ jacent grid point along y.
The accuracy of the method was tested comparing
{a_T} _ r@2)-1(1) (26) the results with those of the classical free-convection
W], Ay problem over a vertical isothermal impermeable plate
10 12:‘\
8__ 10+
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Fig. 3. Wall heat transfer for pure water as function of injection parameter for different temperature differences for each Pr, number.

Arrows show increasing AT: 1, 5, 10, 15 °C.
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(¢ =0) for a fluid with constant viscosity and thermal
conductivity and linear relationship between density and
temperature. In the work of Gebhart [7] a complete table
is given with data concerning the transport quantities of
free-convection adjacent to vertical heated surfaces. This
table was prepared by Krishnamurthy. For example, the
quantities —¢’(0), /”(0) and f;, for the isothermal case
(Pr=6.7) calculated with the present method were
1.0431, 0.4509 and 0.1334 and the corresponding results
by Krishnamurthy were 1.0408, 0.4548 and 0.1335. Ex-
cept of the above comparison the results of the present
method including transpiration have been compared
with those of Parikh et al. [16] for P = 0.7 and uniform
transpiration velocities. Parikh et al. [16] presented nu-
merical results for the ratio of transpiration Nusselt
number Nu, to the neutral Nusselt number Nu} (zero

\ AT=15

—-¢'(0)

(a) e

(c) 3

blowing conditions, ¢ = 0) for different values of injec-
tion parameter £. The above ratio is equal to —¢'(0)/—
¢'(0)", where —¢'(0)" is the wall heat transfer which
corresponds to an isothermal impermeable plate. The
comparison is shown in Table 1.

The results of the present method have also been
compared with those of Minkowycz and Sparrow [13]
for Pr =5 and 10 for water with constant viscosity and
thermal conductivity (taken at ambient temperature)
and linear relationship between density and tempera-
ture. The differences between the results varied from 0%
to 2%.

As mentioned before the results produced in this
work take into account both the non-linear relationship
between density and temperature of water and the
variation of viscosity and thermal conductivity with

4 AT=10

—¢'(0)
T

AT=1

(d) e

Fig. 4. Wall heat transfer for pure water as function of injection parameter for different Pr, numbers for each temperature difference.
Arrows show increasing Pr,: 6.99, 8.01, 9.31, 10.99, 11.40 for AT > 1 and 6.99, 8.01, 9.31, 10.99, 11.40, 11.80, 12.24, 12.70 for AT = 1.
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temperature. As it is expected the results depend on the
temperature difference between the plate and the ambi-
ent water. For a given ambient water temperature and a
constant Pr, number calculated at this temperature, re-
sults have been produced for four temperature differ-
ences between the plate and the ambient water

(AT =1, 5, 10 and 15 °C). The correspondence be-
tween the ambient Prandtl number and ambient water
temperature is shown in Table 2.

For example, for ambient temperature 5 °C results
were produced for plate temperature 6, 10, 15 and 20
°C. In the temperature range between 3.98 and 0 °C

0.8
0.7 Pra=8.01
0.6 —
0.5 —
S 504 -
- T 03
0.2 —
0.1 —
OO e e e N B Sy B e ms e 00 77T T 1 T T T T 1T T T T
-1.5 -0.5 0.5 1.5 -1.5 -0.5 0.5 1.5
(a) ¢ (b) ¢
0.8 — 0.8 —
0771 Pra=9.31 0771 Pra=10.99
0.6 — 0.6 —
0.5 4 0.5 4
S04 — S04
T 03 03
0.2 - 0.2
0.1 — 0.1 —
00 =T T T T 1T T T T T T T T 00 TV T 1 T T T 1 T T
~1.5 -0.5 0.5 1.5 -1.5 -0.5 0.5 1.5
(c) ¢ (d) ¢
0.8 —
0.7 Pra=11.40
0.6 —
0.5 —
S 0.4
T 0.3
0.2 —
0.1 4
0.0 I L e I
-1.5 -0.5 0.5 1.5
(e) §

Fig. 5. Wall shear stress for pure water as function of injection parameter for different temperature differences for each Pr, number.

Arrows show increasing AT: 1, 5, 10, 15 °C.
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results were produced only for AT =1 °C due to lim-
ited capability for multiple combinations. For example,
for ambient temperature 3 °C results were produced for
plate temperature 2 °C.

In the following figures the results of this work are
presented. In Fig. 3 the wall heat transfer —¢’(0) is
shown as function of the injection parameter ¢ for
different temperature differences between the plate and
the ambient water and different Pr, numbers (6.99,
8.01, 9.31, 10.99, 11.40). The following conclusions
can be drawn from this figure.

0.8

0.7

|

0.6

|

0.6

0.5

0.2

[ N N R NN

(c)

v

(0)

1. The wall heat transfer takes high values for large
suction rates (negative ¢ values) and decreases as the
suction rate decreases. The —¢’(0) value is much smaller
for ¢ =0 (impermeable plate) and approaches a zero
value as the blowing rate increases (positive ¢ values).

2. The temperature difference between the plate and
the ambient water plays an important role on wall heat
transfer. For a suction rate equal to —1.5 and Pr, = 6.99
the wall heat transfer takes a value of 9.412 for
AT =1 °C and 5.790 for AT = 15 °C. The first value is
62.56% greater than the second. Generally the wall heat

0.8 4

AT=10

(b)

0.5 -

[ R

©
[
[ B

T O
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Fig. 6. Wall shear stress for pure water as function of injection parameter for different Pr, numbers for each temperature difference.

Arrows show increasing Pr,: 6.99, 8.01, 9.31, 10.99, 11.40.
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0.012

0.40
0.010
).008 0.30
. 0.006
. 020
0.004
~
T 0.10
0.002
0.000 | - e 0.00 e e e e T
0 2 3 4 = ) 1 2 3 5
(a) " (b) "

Fig. 7. Non-dimensional velocity profiles for pure water as function of injection parameter for Pr, = 11.40. Solid lines correspond to
AT =15 °C and dashed lines to AT =1 °C.
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Fig. 8. Non-dimensional temperature profiles for pure water as function of injection parameter for Pr, = 11.40. Solid lines correspond
to AT = 15 °C and dashed lines to AT =1 °C.
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Table 3
Correspondence between the ambient Prandtl number and
ambient temperature of saline water with salinity s = 40%o

T, Pr,
20.00 7.28
15.00 8.31
10.00 9.60
5.00 11.21
0.00 13.25

transfer decreases as AT increases. When the tempera-
ture difference is small (AT =1 °C) the wall heat
transfer increases almost linearly as the suction rate in-
creases but this trend changes as AT increases. For a
suction rate equal to —1.0 and Pr, = 0.70 (air) the wall
heat transfer is equal to 0.911 [16]. The corresponding
value for water (Pr, =6.99, T, =20 °C, AT =1°C) is
6.427 that is the water wall heat transfer is about seven
times greater than that of air for this suction rate.

In Fig. 4 the wall heat transfer —¢’(0) is shown as
function of the injection parameter ¢ for different Pr,
numbers for each temperature difference between the
plate and the ambient water. The variation of wall heat
transfer with ¢ is the same as found before. The in-
teresting point in these figures is the variation of —¢'(0)
with Pr, number. For the first three Pr, numbers (6.99,
8.01, 9.31) and for all AT values the heat transfer in-
creases with Pr, number increase in the suction side. In
the blowing side the differences of —¢’(0) are very small.
For Pr, numbers 10.99 and 11.40 and for AT = 15, 10,
and 5 °C the heat transfer differences are not clear except
of a small region at high suction rates where the
Pr, =11.40 heat transfer is lower than that of
Pr, =10.99 in contrary to the general trend. When
AT =1 °C the heat transfer increase with Pr, number
increase is valid for all Pr, numbers (6.99-12.70).

In Fig. 5 the wall shear stress f”(0) is shown as
function of the injection parameter ¢ for different tem-
perature differences between the plate and the ambient
water and different Pr, numbers (6.99, 8.01, 9.31,10.99,
11.40). The following conclusions can be drawn from
this figure.

1. The wall shear stress increases as the suction rate
decreases and this increase continues on the blowing side
where a maximum is obtained. This maximum occurs
between £ = 0.5 and ¢ = 1. Further increase of blowing
rate causes a decrease in wall shear stress. The occur-
rence of maximum shear stress at the blowing side has
also been found by Merkin [12, Fig. 6(b)] for Pr = 7.00,
isothermal plate (m =0) and variable transpiration
velocity (vy = c,x~'/4). It should be noted here that the
maximum shear stress for Pr = 0.73, isothermal plate
(m = 0) and variable transpiration velocity (vy = c,x~ /%)
lies on the suction side according to results given by
Eichhorn [5]. Combining the works of Merkin [12],

Eichhorn [5] and the present one it is seen that the po-
sition of maximum shear stress moves from the suction
side to the blowing side as the Pr number increases.

2. The temperature difference between the plate and
the ambient water plays again an important role. The
influence of AT decreases as the suction rate increases.
For a blowing rate equal to 1 and Pr, = 6.99 the wall
shear stress takes a value of 0.580 for A7 = 1° C and
0.765 for AT =15°C. The second value is 31.90%
greater than the first one. Generally the shear stress in-
creases as AT increases. This trend is opposite to the one
valid for wall heat transfer.

In Fig. 6 the wall shear stress is shown as function of
the injection parameter ¢ for different Pr, numbers for
each temperature difference between the plate and the
ambient water. For the first five Pr, numbers (6.99, 8.01,
9.31, 10.99, 11.40), for ¢ < 0.5 and for all AT values
there is a clear trend between the shear stress and the Pr,
number that is the shear stress decreases as the Pr, in-
creases. Another interesting point is the behavior of
shear stress for ambient temperatures below the density
extremum temperature (7, = 3.98 °C). The shear
stresses which correspond to Pr, numbers 11.80, 12.24
and 12.70 (dashed lines on the last figure) do not follow
the above trend and they lie between the Pr, = 10.99
(T, =5.00 °C) and Pr, =11.40 (T, =3.98 °C) values.
This is valid only for £ < 0.5 while for & > 0.5 the shear
stresses of the above three Pr, numbers take the lowest
values of all Pr, numbers.

The present method, considering u, £ and p as
functions of temperature, has also been used to produce
results for Pr, =10 (7, = 7.78 °C) and different AT in
order to compare them with those of Minkowycz and
Sparrow [13]. When AT =1 °C, the maximum difference
between the results produced by the two methods was
5%. As the temperature difference increases the diver-
gence increases, too. For example, when ¢ = —2.4 and
AT = 15 °C the wall heat transfer and the wall shear
stress calculated by the present method are 16.2873 and
0.04819 and the corresponding values given by Minko-
wycz and Sparrow [13] are 24.00 and 0.04166. The dif-
ferences are 32.14% and 15.67%. For ¢=0
(impermeable plate) and A7 =15 °C the wall heat
transfer and the wall shear stress calculated by the
present method are 1.0208 and 0.5268 and the corre-
sponding values given by Minkowycz and Sparrow [13]
are 1.169 and 0.4192. The differences are 12.68% and
25.67%. The conclusion from this comparison is that,
the results given by Minkowycz and Sparrow [13] for
Pr =5 and 10 are valid for water only when AT is small.
For Pr =10, AT should be below 1 °C.

The velocity and temperature profiles for Pr, = 11.40
(maximum density temperature) and for AT = 1 and 15
°C are presented in Figs. 7 and 8 for different values of
injection parameter ¢. The effect of blowing is to in-
crease the maximum velocity and shift its location far-
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ther away from the wall. This shift is accompanied by an
increase of the inclination of the velocity profile along
the normal to the plate but only for ¢ < 1. For stronger
blowing rates, although the maximum velocity continues
to move away from the plate, the corresponding profile

inclination decreases. This means that the wall shear
stress also decreases and therefore a maximum shear
stress occurs in this region. This result is in accordance
with the maximum shear stress found in Figs. 5 and 6.
There are some other interesting points in velocity
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Fig. 9. Wall heat transfer for saline water (s = 40%0) as function of injection parameter for different temperature differences for each

Pr, number. Arrows show increasing AT: 1, 5, 10, 15 °C.
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profile figures. The temperature difference between the
plate and the ambient water plays an important role.
Generally the maximum velocity increases as AT in-
creases. For a suction rate equal to —0.50 the maximum
velocity takes a value of 0.0069 for AT =1 °C and
0.0131 for AT = 15 °C. The second value is 1.90 times

greater than the first one. For a blowing rate equal to
1.50 the maximum velocity takes a value of 0.3330 for
AT =1 °C and 0.3955 for AT =15 °C. The second va-
lue is 18.77% greater than the first one. From Fig. 8 it is
seen that as the blowing rate increases the temperature
profiles become wider and the boundary layer thickness
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Fig. 10. Wall shear stress for saline water (s = 40%o) as function of injection parameter for different temperature differences for each

Pr, number. Arrows show increasing A7T: 1, 5, 10, 15 °C.
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Fig. 11. Non-dimensional velocity profiles for saline water (s = 40%o) as function of injection parameter for Pr, = 13.25. Solid lines
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increases. The profiles that correspond to AT =1 °C Following the above mentioned procedure results
have greater inclination than those of AT = 15 °C at the were also produced for saline water free-convection
suction side while the AT =1 °C inclination is smaller with constant salinity throughout the boundary layer
than that of AT = 15 °C at the blowing side. equal to 40%o. The results are different from those of
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Fig. 12. Non-dimensional temperature profiles for saline water (s = 40%o0) as function of injection parameter for Pr, = 13.25. Solid
lines correspond to AT = 15 °C and dashed lines to AT =1 °C.



A. Pantokratoras | International Journal of Heat and Mass Transfer 45 (2002) 963-977 977

pure water because salinity influences the kinematic
viscosity, thermal diffusivity and density and conse-
quently the source term of momentum Eq. (2). It
should be mentioned here that maximum density
temperature is a function of salinity (for constant
pressure) and this temperature decreases as the salinity
increases. The maximum density temperature is 0 °C
for salinity equal to 18.62%0 while this temperature is
negative for greater salinities. The results produced in
this work concern ambient temperatures in the range
between 20 and 0 °C. Consequently no density extre-
mum is included in this range for s = 40%o. The cor-
respondence between the ambient Prandtl number and
ambient saline water (s = 40%0) temperature is shown
in Table 3.

In Figs. 9 and 10 the wall heat transfer —¢’(0) and
the wall shear stress /”(0) are shown as function of the
injection parameter ¢ for different temperature differ-
ences between the plate and the ambient water and dif-
ferent Pr, numbers (7.28, 8.31, 9.60, 11.21, 13.25). The
velocity and temperature profiles for Pr, = 13.25 and for
AT =1 and 15 °C are presented in Figs. 11 and 12 for
different values of injection parameter &. In general, the
trends identified in pure water are valid also in saline
water although the absolute values are different.

4. Conclusions

In this paper, the problem of pure and saline water
free convection along a vertical isothermal plate with
uniform transpiration has been investigated with the fi-
nite difference solution of the boundary layer equations.
Results have been produced for the temperature range
between 20 and 0 °C. The International Equation of
State for Seawater is used for the calculation of the
buoyancy force and the viscosity and thermal conduc-
tivity have been considered variable during the solution
procedure. The major findings from the present study
can be summarized as follows:

1. The temperature difference between the plate and the
ambient water has a significant influence on all vari-
ables of the problem that is the wall heat transfer,
the wall shear stress and the velocity and temperature
profiles.

2. The maximum wall shear stress occurs in blowing
when the fluid is water and in suction when the fluid
is air.

3. In general, the wall heat transfer increases as the Pr
number increases.

4. The wall shear stress decreases with the Pr number
increase but this trend changes for ambient tempera-
tures below the density extremum temperature.

5. The results of saline water are qualitatively the same
as those of pure water although the arithmetic values
are different.
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